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Determination of resonance spectra for bound chaotic systems 

Per Dahlqvist 
Mechanics Departmen< Royal Institute of Technology, S-100 44 Stockholm Sweden 

ReQived 18 August 1993, in final form 1 November 1993 

Abstract. We consider the computation of the eigenvalues of the evolution operator-the 
resonance spectrum-by m c m  of the ZCIOS of a zem juncrion. In particular we address the 
problem of applying this formalism UI bound chotic systems, caused by e.g. intermittency 
and non-completeness of the symbolic dynamics. For bound intermittent system we derive an 
approximtion of the Zeta function. With the aid of this zeta function it is argued thaf bound 
systems with Ions time fails have branch cuts in the zeta function and Uaces (of the evolution 
operator) approaching U& as a power law. We also show that the dominant time scale can be 
much longer than the period of the shortcst periodic orbit, as is, for exmple, the case for the 
hyperbola billiard. Isolated zeros of the zeta function for the hyperbola billiard are evaluated 
by means of a cycle expansion. Cmcial for the success of this approach is the identification 
of a sequence of periodic orbit responsible for a logarithmic branch cut in the zeta function. 
Semiclassical implications are briefly discussed. 

1. Introduction 

Time correlations provide an efficient tool for the analysis of dynamical systems. For some 
chaotic systems correlations decay exponentially, reflecting loss of memory during evolution. 
Often the correlation function is found to be modulated by some typical frequencies related 
to the periodic orbits of the system. Its Fourier transform will thus have poles (resonames) 
in the complex frequency k plane. The imaginary parts correspond to the decay rates and 
the real parts to the oscillation frequencies. Integrable systems have resonances on the real 
axis, reflecting quasiperiodicity of the motion. 

A rigorous theory for resonances has so far been developed only for Axiom-A systems 
[1-4]. The correlation function is then meromorphic (i.e. it has nothing worse than poles) 
in a strip around the real k-axis. For mixing Axiom-A maps one can establish exponential 
bounds on the decay of correlations, i.e. there is a strip (gap) above the real axis without 
resonances. But even for Axiom-A flows the resonances may lie arbitrady close to the real 
axis leading to non-exponential decay of correlations [5,6]. It is a general experience that 
the positions of the resonances are independent of the particular observables whereas the 
residues are not. This is proven only for Axiom-A systems but numerical work suggests 
that it holds more generally. This is very intriguing since one can thus characterize a system 
by its (classical) resonance spectrum, in nice analogy with its quantum spectrum. 

However, Axiom-A systems are very idealistic systems from a physical point of view, 
although they may be realized by, for example,~some open scattering systems. n e  purpose 
of the present paper is to study resonance spectra in bound Hamiltonian systems, exhibiting 
chaos. Then we know that there is a trivial pole at k = 0 reflecting the boundedness of the 
system. All other resonances lie in the upper halfplane. This is essentially all we know for 
certain. 
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764 P Dahlqvist 

Crucial for the successful theory of Axiom-A system is the existence of a finite Markov 
partition. One can thus perform a well converging cycfe expansion of a zeta function in 
order to locate the resonances [4]. Such finite grammar does generally not exist for bound 
systems. This leaves us without any a priori knowledge of the analytical structure of the 
zeta function we are going to study. 

We will restrict ourselves to ergodic billiards in the Euclidean plane, thus avoiding 
the presence of stability islands which seems impossible to avoid in smooth potentials 
[7]. Seemingly all systems of this type have one thing in common: they are intermittent. 
Qpically, the motion will intermittently alternate between a chaotic region of phase space 
and a regular one. This might imply power law decay of correlations. In a paper by Baladi, 
Eckmann and Ruelle [8] (hereafter referred to as the BER approximation) it is demonstrated 
how the approximate positions of the resonances for intermittent systems may be calculated. 
This result is directly applicable to a wide class of bound chaotic systems and we will make 
use of this observation in the following. 

The second main theme of the paper is a periodic orbit sum rule discovered in 191. 
It is thus shown that a certain weighted sum over all periodic orbits (which turn out to 
be identical to the trace of the evolution operator) tends to unity as t + 00. This is an 
asymptotic result and it is of course highly interesting to know how this asymptotic limit is 
approached. This periodic orbit sum is a crucial ingredient when computing correlations in 
qaantum spectra. 

The paper is outlined as follows. We begin, in section 2.1, by reviewing the derivation 
of the classical zeta function whose zeros are associated with the resonances. Then, in 
section 2.2, we review how, according to the BER approximation, the positions of the 
resonances are related to a simple probability distribution associated with the system. In 
section 3 we relate, by heuristic arguments, different features of this probability dishibution 
to the resonance spectrum. In section 4 we apply cycle expansions of the zeta function 
to a specific dynamical system-the hyperbola billiard. Section 3 and 4 run along rather 
separate lines with only occasional cross references. In section 5 we discuss the relevance 
of our result for correlations in quantum spectra. 

2. Theory 

2.1. The zetafwtction 

Periodic orbit expansions (or cycle expansions-we will use the words cycles, periodic 
orbits or simply orbits synonymously in the following) of zetafunctions have proved to be 
successful for calculating various averages of chaotic sets. Most of the labour has so far 
been devoted to maps, that is, systems with discrete time. A zeta function for systems with 
continuous time has been derived in [IO]. We briefly review the derivation. The resonances 
k,, may formally be associated with the eigenvalues exp(ik,t) of the evolution operator trL', 
acting on a function 4(x) as 

The phase-space point x is taken by the flow to f'(x) during time t. The structure, 
exp(ik,)', of the eigenvalues is required by the semigroup property of the operator: 
L'l''~ = L''L'2. Our main concem in thii paper is to compute the trace of this operator, 
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that is, the sum of its eigenvalues. The trace may be written as a sum over the isolated 
periodic orbits in the system. 

8(t  - nTp) 
Idet(1 - M;)I 

m 
trL' = / 8 ( x  - f'(x))dx = E T P C  

p n=1 

where n is the number of repetitions of primitive'orbit p ,  having period Tp and M p  is the 
Jacobian of the Poincar.6 map. 

The function trL', (we will refer to this object as simply the trace in the following) 
may be written as the Fourier transform of the logaxithmic derivative of  a zetufrmction: 

We restrict ourselves to systems with two degrees of freedom for which all periodic orbits 
are isolated and unstable. The zeta function then reads 

where A, is the expanding eigenvalue of Mp. Each zero k, of Z(k)  induces a pole in the 
integrand and is identified with an eigenvalue of the evolution operator. The leading zero 
is the escape rate, which is zero for a bound system; ko = 0. 

If the zeta function is entire we can write 

If there is a gap between the real axis and the non-trivial zeros then the trace approach 
unity exponentially fast. 

The corresponding zeta function for systems with a hyperbolic analytic Poincar6 map 
has been shown to be entire provided the existence of a finite Markov partition [4]. These 
conditions generally break down for bound systems. 

However, the trace is expected to converge towards unity for bound systems, under 
quite general circumstances, as was shown in [SI. This is often referred to as a periodic 
orbit sum rule. 

In equation (5) we have neglected the integral along the upper semicircle. It may be 
argued that this can only yield a deltafunction 8 ( t )  and derivatives of the deltafunction J n ( t ) .  

As an example consider the following simplified Axiom-A system (it may be realized 
by a three disk scatterer with the disks infinitely separated). We take the system to have 
a binary complete symbolic dynamics. An orbit p has. eigenvalue A, = A: and period 
Tp = npTo where np is the length of the symbol code p.. Expanding the product over cycles 
gives, cf [ I l l  

Z(k) = n m ( 1-2- e-;-)"" 
m=O 

The product is convergent so we can just read of the zeros 

1 
kn,m = - ( 2 m  + i[(m + 1) In A0 - In 21) n = 0, f l ,  f2, . . . . (7) To 
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The spacing between zeros in the real direction is directly related to the single timescale 
in the system-the period of the shortest periodic orbit. The situation for bound systems is 
generally much more complicated, as we will see later; they may exhibit an infinite set of 
time scales. 

For a more general system with complete binary grammar the spectrum above will give 
the goss shucture, whereas longer periodic orbit provide corrections [11,12]. However, 
even for small deviations from the simple example above there will be quite intricate 
cancellations between poles and zeros [4,11,13] of the individual m-factors. 

For bound systems there is generally, as we said, no finite Markov pmition and no 
hyperbolicity. In this paper we will study the zeta function (4) for the first time for a 
non-hyperbolic flow. We have then no reason to expect entireness of the zeta function and 
we will concentrate on revealing the main singularities. Note that a singularity, such as a 
pole, in the zeta function cannot be interpreted as an eigenvalue of the evolution operator. 
We will not touch upon the difficult question of how to compute correlation function in this 
case, but rather concentrate on the analytic struchue (zeros, poles branch cuts . . .) of the 
zeta function and the behaviour of the corresponding trace, as defined by equation (2). 

2.2. The BER approximation-a probubilistic approach 

In [8] a method has been given for the determination of the approximate resonance spectrum 
for intermittent systems. In such a system there are two, more or less, distinct phases; one 
regular and one irregular (chaotic). Call the consecutive instants when the system enters 
the regular phase { t i )  and consider the intervals Ij = [ t j - ~ ,  ti 1, Provided the chaotic phase 
is chaotic enough, the motions in different intervals are nearly mutually independent. In 
particular the lengths of these intervals Ai = ti - ti-1 are mutually independent and A may 
be considered as a stochastic variable with probability distribution p ( A ) .  Consider now the 
Fourier transform 

Under the assumption above, the roots of 

1 - p ( k )  = 0 (9) 

will now provide the approximate resonances, that is, the approximate zeros of the zeta 
function. 

Reference [SI does not discuss zeta functions. However, having two functions Z ( k )  
and 1 - j ( k )  with approximately the same zeros (both have also the trivial zero !Q = 0 in 
common) we immediately suspect them to be closely related. Indeed, we will show that 
Z(k)  w 1 - F(k) in the Bm approximation. To this end we will modify the calculation of 
[SI so as to apply duectIy to the trace of the evolution operator. 

First we tum the phase-space integral in equation (2) into a time average: 

where V is the available phase-space volume. 
Let now trm(t) be the trace conditioned by ‘if to E I ,  then t + to E In+”. The trace is 

now expressed as the sum trL’ = ~m,otrm(t). We now define two probability distributions: 
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fi ( x ,  U) is the probability that the system is at phase-space point x at time to and that 

f z ( y ,  U) is the probability that the system is at point y at time to + t and that time U 
there is time U left of the current interval. 

has elapsed since the current interval was entered. 
We can now express the average as 

&(t) = V(A) dudUp'"-''(f - U - U )  ~ d x d y 6 ( x - y ) f i ( x , u ) f ~ ( y . u )  (11) J J 
where p*"(t) is the n-fold convolution of p ( f ) ,  and (A) the mean length of the intervals. 
We now express the convolution by means of the Fourier transforms 

am@) = - v(A) 2n J d k e ~ ' ~ ( k ) " - ' J d u d u d i d y 6 ( x  - y)e-""fi(x,u)e- 'Y"f~(y.u)  

(12) 
= - V(A)  J dk efifi(k)m-lJ d i ~  ( x ,  k )$ (x ,  k ) .  

2n 
We can now sum over m and arrive at ~~ 

trL' = tr&) + __ 1 JdX A(x3 k)$ (x ,k ) .  (13) 

-% z'(k) .EL J dr JI (.x, k ) f i ( x ,  k ) .  (14) 

Z ( k )  = Z ( k )  = 1 - P(k) (15) 

V(A) 2n J dke'yf 1 - i ( k )  
Comparing with equation (3). and neglecting tro, we identify 

Z(k)  1 - m  
Moreover, we can identify: 

provided that 

V(A) j dx A (1, k ) A ( x ,  k) = Ae-"*p(A) dA. (16) J 
To verify that this is indeed the case we make use of the fact the remaining time of the 
current interval U is a function of the phase-space point U = g l  ( x )  so that 

fik U) = @ ( . M u  - n ( x ) )  (17) 
where @ ( x )  is the phase-space density. Similarly we have 

f d x ,  U) = @ ( X ) S ( U  - gz(x)). (18) 
We can now express the probability function p ( A )  weighted with the length of the interval 
A in terms of gl and gz 

A '~P(A) = (4) @(XP(A - Si(x) - g Z ( X ) )  d ~ .  (19) 

Also, using the fact that the phase density is uniform, @ ( x )  . V = 1, equation (16) Cs easily 
verified. 

In this section we have been able to give the zeta function a probabilistic interpretation 
and have constructed an approximate zeta function &k) whose zeros should be interpreted 
as the approximate resonances. This is one of the main achievements of the paper. To 
establish this correspondence we have neglected the function a&) describing correlations 
within an interval. These correlations are thus inherent in Z(k)  but not in 2 ( k ) .  We 
therefore expect deviations in the results obtained from the two functions for small t. 

J 
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3. Phenomenology of the BER approximation 

The close relationship between Z(k)  and z ( k )  as defined by equation (15) motivates a study 
of how different featura of the probability function p(A) affects the spectrum and trace of 
the evolution operator. Throughout this section we will ignore the difference between Z(k)  
and k ( k ) ,  that is we will temporarily assume that Z(k)  = &k). The reader should keep in 
mind that the spectra and traces obtained here are of course only approximations of those 
of real dynamical systems and the errors are not under control. 

We begin by studying a model (model A) with a sharp step and exponential decay 

where N is a normalization factor. We take the Fourier transform and get 

e-ikTr 
ZA(k) = - - 1. 1 +ikTz - 

One can obtain the following asymptotic expression for the zeros of thii function 

which agrees very well for large n and/or large Tz/Ti (cf figure l(a)). We see that the 
relevant time scale is Ti. whereas Tz is of minor significance. Z A ( ~ )  has a simple pole at 
k + i/T2 reflecting the behaviour of p*(A) at infinity. This is all we need to calculate the 
trace by means of equation (3). We get 

trc = Y-(i) + *'tail@) (23) 

where 

(24) 

and 

yd,(i) = -e-.'/%. (25) 

The sum (24) is absolutely convergent when t /T i  z 1 and tends exponentially to unity 
as t/z -+ W. To study its behaviour for small t/T1 we have tomnear the function term :... . .. !,-,"' 
by term, that is convolute it with a Gaussian having width-U. For a general spectrum 

.:.!\b L\: 
, 0 .  k, = +U" + ib, we find for the smeared sum . ~, 

2 

n 

Ymms,c(i) = 2 x e x p  (--(U: U2 - b:) -brit 
cos(u,t - U  a,,b,). (26) 

2 

For all relevant spectra this sum is absolutely convergent for any smearing width U .  

I! 3 



3 

2.5 

1 -  

T,-I fn(k)  1.5- 

0 . 1  

1.2 I 

. . 
- 

d 

- 

~~~ ~ ~~~ ~ 

10 I5 * o  25 30 35 4 0  

769 

Figure 1. The spectrum (a) of model A (0) and B (+) and its asymptotic expression (0) and 
(b) the traw for model A (full line) and B (dashed). The asymptotic expression has been used 
to calculate its discrete contribution to the trace. 

The trace when T ~ / T I  = 0.5, is plotted in figure l(b). The sharp step at t/T1 = 1 
reflects the sharp step in  p*(A). They are indeed steps whenever f /T1 is an integer, but 
due to the exponential damping they are less pronounced. 

Let us now consider a case with power-law decay of p(A) (model B). 

Again we compute the Fourier transform and sekk the zeros of 

Z&) = (m - l)Em(ikT1) - 1 

where Em(z) is the exponential integral. It turns out that all zeros are positioned where we 
can use the asymptotic expansion of E,,,(z), see [14]. The positions of the zeros are well 
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approximated by 

which is equivalent with model A when m - 1 = Tl/T*, that is when the height of the 
step in p ( A )  is the same. High zeros (large n) are thus only sensitive to the immediate 
vicinity of the step. In figure l(a) the exact zeros of models A and B are compared with 
this asymptotic result. Formally, if we increase m(or T1/T2 in model A) ps(A) will tend 
to a delta peak, and the resonances approach the real axis, resembling an integrable system. 
Of course the assumption in the EER approximation is then no longer fulfilled. 

However there is one major difference to model A. The zeta function is no longer 
meromorphic since E,,,(ikTl) has a branch cut along the positive imaginary k-axis. This is 
a consequence of the power-law tail of ps(A). 

We therefore have to modify the contour used in section 2.1 

where firan& is given in figure 2. We now get 

trL' = Yzms(t) + Yr4l(t) (31) 

with 

and Yzr,&) as before. E is a small positive number. The resulting trace for Model B 
(m = 3) is shown in figure I@). The discrete Y"(t) is the same as in the previous model 
(A) since we are using the asymptotic expressions (22) and (29). It is straightforward to 
show that -+ -1; t -+ 0 and Y ~ l ( t )  -+ -T1/2t; t -+ CO. The asymptotic behaviour 
of the trace for general p ( A )  with power-law tail is given at the end of this section. 

Let us modify the first model (A) so as to have a C' discontinuity instead of a CO: 

I 

Figure 2. When Z(k)  has a branch cut along the positive imaginary axis the Fourier transform 
of the logarithmic derivative has to be integrated dong nranch. 



Determimuion of resonance spectra for bound chaotic systems 77 1 

There is again a pole at k = i/T2. The zeros are now approximated by 

Apart from shift a in the real direction, as compared to model A (and B), the important 
effect is the factor 2 in the imaginary part-the zeros lie further away from the real axis. 
The corresponding trace is given in figure 3. 

Figure 3. The. uace for model C. 

Finally let us demonstrate how small irregularities in p(A) will have a drastic effect on 
the spectrum. We will consider 

0 A < T  

T < A < 2 T  
(35) 

I N A  - T) exp 
PD(A) = 

N(A-T)exp -- ( 1 + ~ )  2 T < A .  

ZD(k) has a double pole at k = i/T. The spectrum of zeros for different perturbations, E, is 
given in figure 4(a). In the low part the unperturbed spectrum is only slightly affected. The 
perturbation corresponds to a non-leading generation of resonances. But eventually the two 
generations interfere, leading to a modulation in the spectrum. For high f the higher time 
scale (2T) takes over and dominates. This result leaves us with considerable doubt on the 
possibility of determining the resonance spectrum from a numerically obtained probability 
distribution p(A). If there is a single dominating time scale it seems perfectly feasible 181. 
But there might hide further time scales, with considerable potential impact on the spectrum. 
The traces for E = 0 and 6 = 0.01 are given in figure 4(b). For the unperturbed case, the 
trace is essentially zero when 0 c A c T. This is a remarhble conspiracy between \v,,, 
and Yd1 = -2e-'lT to cancel in this way. But from a physical point of view it seems 
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Figure 4. The spectrum (a), and the trace (b) for model D with different perturbation strengths E .  

sensible, cf equation (2). There is, in any system, a shortest periodic orbit, with period Tdn, 
such that trL' = 0 when f < Thp 

When we add a perturbation, E ,  the trace changes in two respects. First, po(A)  has 
a small step at t = 2T,  which is not visible in the figure. When 0 < A c T the trace 
is no longer positive definite. This is not too alarming since we have neglected tr&) in 
equation (13). Moreover, the spectral sum is divergent in this region so it is questionable 
what confidence we should have in the results there. We have also neglected the delta 
function contribution from the integration over the large semicircle which of course gives a 
contribution to the trace for small t after smearing. For larger t we see that a small change 
of p ( A )  corresponds a small change in the trace, only non-leading zeros axe sensitive to 
the perturbation. 
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Let us summarize our findings so far, remembering that our evidence is only heuristical 
and that we have assumed the exact equality Z ( k )  = @ k ) .  The zeros of the zeta function 
depend almost entirely on the breakpoints (i.e. different kinds of discontinuities) in the 
probability distribution p(A). Each such breakpoint introduces a time scale. When several 
such timescales are present the largest will dominate sufficiently high up in the spectrum, in 
the sense that the spacing between successive zeros in the real direction is directly related 
to this Onescale. 

The zeta function is entire only if p(A) decays faster than exponentially. If the decay 
is exponential the zeta function will have a pole on the imaginary axis. In this case the 
trace will approach unity exponentially fast. If p(A) decays as a power law there will be a 
logarithmic branch cut along the positive imaginary axis implying power-law convergence 
of the trace. It is straightforward to show that if p(A) - l/A'", the tail contribution, 
Y ~ , ( t ) ,  to the trace, will behave asymptotically as 

with m > 3, where ( ) denotes mean value. A. is any point in the tail of p(A). 

4. Cycle expansions-studies of a dynamical model 

In this section we will study periodic orbit expansions of the zeta function (4) for a specific 
dynamical system, namely the hyperbola billiard, i.e. a point particle elastically bouncing 
off the walls given by the equation 

lxyl = 1. (37) 

An effective algorithm exists for the computation of the cycles in this system 1151. For a 
definition and discussion of the symbolic coding of cycles used in this paper, please consult 
1161. We use units such that the particle mass m = 1 and we fix the energy to E = 4, the 
length and time scales thus coincide. The zeta function may be factorized into the irreducible 
representation of the symmetry group [17], which is CdV for the hyperbola billiard. We will 
restrict our attention to the symmetric representation AI  containing the trivial zero ko = 0, 
[17]. This is equivalent to restricting the system to the fundamental domain [16,17]. The 
periodic orbits considered in the following are periodic in this fundamental domain. They 
have to be retraced 1, 2 or 4 times to close on to themselves in the full system. Although 
we will~frequently draw pictures of the periodic orbits in the full system since they are 
easier to visualize that way. 

First we expand the m-product of (4) 

Recurrence relations for the expansion coefficients b,, are derived in the appendix. If we 
now ,expand the p-product, we obtain a Dirichlet series consisting of all distinct linear 
combinations (pseudo-orbits) N = [n,]: 

Z ( E )  = n cNeiT" (39) 
N 
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Table 1. Some simple sequences of cycles. Invariants are given for the last cycle in each 
sequence. 

22101 -640 “ 9 2 ~ T d  -34000 

201 m - -~ 
i ioi  m - . - 

where we have defined the quantities 

TN = c n p T p .  
P 

(40) 

(41) 

There are no obvious choices of how to order the terms, but natural choices are to 
order them according to (i) length of the symbol code, (ii) increasing period T,, or, (iii) 
decreasing amplirudes CN. Our default option will be the last one. Switching between the 
three options will mean a complete reorganization of the sequence of the pseudo-orbits! 
Our default choice means that we can make no simple statements about the conditional 
convergence of the expansion. This will however not bother us too much. Typically, non- 
trivial zeros of zeta functions are positioned where the products, or series, are not even 
conditionally convergent, cf the Riemann zeta function, although in some lucky cases, due 
to alternating signs of the CN’S, they will lie in the strip of conditional convergence [HI. 

The idea is now to compute the partial sums (the first Ncul terms) and determine the zeros 
of the truncated expansion and study their possible convergence when NcUr is increased. To 
this end we have computed all prime orbits with eigenvalue Ap < 2700, and all orbits with 
T < 14, both samples containing about 103 orbits. To have something to cross-check our 
result with, we calculate the trace by means of equation (2). Of course, we have to use 
smearing so we replace the delta function in equation (2) with a Gaussian having width 
U = 0.5. The result is given in figure 10. Due to the exponential proliferation of cycles 
th is method soon becomes completely unrealistic as t is increased. 

Our first attempt is to simply include all orbits up to the cut-off. The zeros thus found 
will show no tendency of convergence (the zeros drift monotonously towards the origin as 
N,,, is increased), and the trace, computed by means of the sum over zeros (again using 
smearing, cf equation (26)). will not show the slightest resemblance with the exact trace. 
Such failures of convergence are usually due to some singularity in the zeta function. In 
order to identify this we will, in some detail, study the structure of the set of cycles. 

Inspired by the BER approximation we divide (somewhat ambiguously) the billiard into 
one chaotic part in the centre and one (almost) regular out in the arm. We can thus divide 
the cycles into three subsets. 

1. Cycles with bounces exclusively in the chaotic region. The eignenvalues A are 
exponentially bounded with length. 

2. Cycles with bounces in both regions. 
3. Cycles with bounces exclusively in the regular arms. 
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In the following we will focus ouc attention on the types of cycles which dominate the 
expansion, with ordering chosen as above. These are the pseudo-orbits with large C, which 
means that the important cycles come from set 2 and 3 above--cycles spending most of the 
time in the arms. 

It is also convenient to distinguish between simple cycles, that is cycles making only 
one (or no) excursion into an arm, and composed, that is cycles making more than one such 
excursion. The simple cycles occur in sequences of the form pOJ' where the row of 0's 
corresponds to a number (- j )  of oscillating bounces in~an arm and p corresponds to the 
behaviour of the central region. :3; 

,.,' 

,..' 
. 

Figure 5. Members of some simple sequences in ihe 
hyperbola billiard. 

Some examples of simple cycles are given in table 1 and figure 5. Cycles belonging to 
the sequences 2@ and 1 I@ make one excursion into an arm and are then injected into the 
opposite arm without any bouncing in the central chaotic region. These two sequences are 
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in fact unbounded. All other simple sequences are, we believe, finite. A cycle 210j makes 
a number of oscillations in one arm, sneaks into a neighbouring arm without bouncing in 
the middle. This is obviously a vcry short sequence. A cycle in the sequence 220j makes 
a number of oscillations in one arm, makes one scattering in the central region and is then 
injected back into the arm it came from. A cycle 2210' makes a number of oscillations in 
one arm, bounces once in the central region and is then injected into a neighbouring arm. 

It is obvious from figure 5 why finite families pW are terminated at some j = j - .  
There is a section of the orbit in the central region coming closer and closer to a branch of 
the boundary as j is increased. When j = j,, + 1 the orbit would need to go through this 
branch which it of course is not allowed to. For this reason the finite sequences are naturally 
organized into families where one member goes directly to the opposite branch when another 
member hits a branch on the way, see figure 5(a). Thus 21W may be considered as a member 
of (210', lW+3). Other i m p o m t  families are (2201. 211W, 1210', lolo'+') and (2210j. 
2010'+', 120'+', lllOj+z). All members of a family terminate at the same j = j,,, cf 
[16,19]. The family member with the fewest bounces in the central region has the largest 
weight and the rest are of minor importance. 

The class consisting of infinite simple sequences will be named Ci.f in the following 
and contains only 20' and 110'. The class of simple finite sequences is named Cfi". The 
orbits in these classes are taken from sets (2) and (3) above, respectively. The orbits in 
subset (1) may be absorbed into e.g. class Cfi.. 

Composed cycles doing two excursions into the potential arms may be written in the 
form p @ p @ .  Picking the simple cycles (01 rather symbol strings) plOj1 and p20" 
from CiDf and/or Cfi. we can construct three classes of such composed cycles: Cid * G.p, 
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Cfi. * Cfi, and Cfi, * Caw Generalization to higher orders are strightforward. Members 
of the 2-composed sequences 2@120jz, 20i1210'2 and 210j1210~ (from the three classes 
respectively) are displayed in figure 6. The latter two are again finite. The allowed cycles 
may be represented in the j, , j z  plane as in figure 7. 

t 21ry'210" E C," * q;, 

t 2W121W' E c,., * c,, 

31 

Figure 7. Graphical representation of the allowed cycles in some composed sequences. 

The region of allowed cycles is quite different from the class Ci.r*Ci.f. Take for example 
the 2W120iz sequence. In the adiabatic approximation one can show that, in the limit j ,  >> 1 
and j z  >> 1, the allowed cycles lie in the infinite region. 

(42) jl ~ - i j z i a , j ,  
a 

where a = 1158. 
Of course, the division between simple and composed cycles is again somewhat 

ambiguous; e,g. should 21210' be considered as simple or to belong to the composed 
sequence 210{21%, cf figure 5(b) and 6(a)? 
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Let us now discuss the contributions of the different sequences to the expansion of the 

We begin with the class Cid. For large j it was shown in [20] that the periods and the 
zeta function. 

stability eigenvalues for the 201 and ll@ sequences are: 

where c = 11714 for ZN.  The corresponding factor for llW is much bigger. We suspect 
these infinite sequences to be the main cause of our divergence problem. Before following 
this track we discuss the finite sequences. 

A finite simple sequence p N  will have invariants depending on j similarly to the infinite 
ones above, but with j terminating at some jmar (see table 1). The slope of Aj versus j will 
depend on the behaviour in the central region and seems to be exponentially bounded with 
the number of bounces there. Each finite sequence naturally introduces a time scale given 
by the period of the last orbit, some of these timescales are named in the table. The trace, 
figure 10, will obviously show a sudden decrease; cf equation (2) at any such time scale. 
In figure 10 they are rather recognized as smooth peaks due to smearing. This (infinite) set 
of timescales are essential for the problem and will be reflected by the zeros of the zeta 
function. 

The cross-terms between simple orbits are naturally discussed on the same footing as 
the composed sequences. There is a potential possibility of shadowing, that is, the term 
due to orbit p10.’1p@ is compensated by the pseudo-orbit consisting of plOj’ and p ~ o ’ ~ .  
This can however only be partly realized due to the finiteness @nming) of the sequences. 
The double hatched area in figure 7(u) shows where. there exist compensating cross-terms. 
However, these terms are sparse in the expansion, and may in some sense be considered 
as corrections, cf the cuwufure corrections in [I. 11. The orbits along the boundary of the 
allowed region (cf figure 7) also introduce timescales. 

We suspected the class Cjnf to be the main cause of our problem. We will now attempt 
a factorization 

where, in the first factor, we only include cycles p E Ci.r and in the second we include the 
rest p E &, - &. The first factor isapproximately 

(45) 

Cross-terms are sparse in the series, so we have omitted them. It is straightforward to 
see that the function defined by this sum have a logarithmic branch cut along the positive 
imaginary axis. 

Our hope is now that the eigenvalues are given by the zeros of Zz(k) ,  which is expanded 
as before. We now seem to obtain a well defined spectrum where when N,, > 180 see 
figure 8! However, we do not find much improvement when N,, is increased further. It 
is thus obvious that the zeta function needs further regularization. The convergence of the 
trivial zero ko is plotted in figure 9. The convergence is extremely slow which reflects the 
fact that the zero sits on a singularity (branch cut) which has not been completely removed. 

We obviously need some support for our claim that the obtained spectrum is indeed 
close to the exact one. To that end we compute the trace by means of the sum over zeros 
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r w  o:;;I 2 , , , , , I 
0.05 

0 . 5  l.5 2 . 5  

ll.li1 

F i w  8. Spectrum of the hyperbola billiard for various numbers of pseudo-orbits Ncut, 

N",, 

Figure 9. Location of the zero ku as a function of Ncu,, 

= 1 + E, eikm' and compare with the exact result due to equation (2). Again we 
use Gaussian smearing, which is unavoidable since we only have a finite sample of zeros 
of Z(k) .  The result is plotted in figure 10. We see that the curves closely resemble each 
other on the small scale structure. 

Let us first study the smcture of the spectrum (cf figure 8). We recognize several 
features from the spectra in section 3. The imaginary part of the zeros increase slower 
than logarithmically with the real parts (cf model D in section 3). We also recognize a 
modulation of the spectrum. These features indicate that several time scales are involved. 
The real parts of the zeros are more or less equally spaced. The mean spacing corresponds 
to a time scale T % 27.8 which is much longer than the shortest periodic orbit of the system, 
Tfin = 2. It is indeed close to the timescale T, 4 27.61 associated with the sequence 220/ 
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Fiyre 10. The tnce for thc hyperbOl3 b d h d  using dmct summation (equnon (2)) (long 
dahed). and as 3 sum over eigenudues. with Neat = 200 (shon dached), and N,, = 460 (full 
line). 

which dominates the expansion of Zz for the first 180 terms. Clearly, using ordering option 
(ii) we would need all cycles with Tp < T, in order to resolve the spectrum. This would 
mean - lo6 cycles. With the ordering, option chosen we have managed to obtain a good 
approximation to the spectrum using a thousand times fewer orbits! 

In figure 10 we see that the exact trace and the sum qX,- differ by a slowly varying 
function. The immediate suggestion to explain this discrepancy is that there is another 
contribution to the trace from a pole or a branch cut, cf Y~,. The latter possibility is 
suggested by the function Zl(k) having a branch cut. However, we do not yet claim that 
Zz(k), as defined above, is entire. We cannot expect the branch cut to be factored out that 
easily. This means that we cannot compute this extra contribution only from Z1. 

The problems encountered so far could be somewhat enlightened by explicit knowledge 
of the probability distribution p ( A )  for the billiard since we expect there to be a close 
relationship between its Fourier transform and the zeta function. This is easily obtained by 
simulating the system. It is thus essential that we take advantage of the adiabatic invariance 
in the arms, cf [ZO]. There is no sharp borderline between the chaotic and regular part 
of the billiard. We make an arbitrary division at some x = xdiv (remember the system is 
defined on the fundamental domain y z 0, y 4 x). The result is given in figure 11. The 
histogram is based on lo6 visits in the arm and the borderline is set to xdiv = 4. 

We recognize the time scales as introduced above and defined in the table, as underlying 
the smcture of p ( A ) .  For small A < 15 the result is sensitive to the exact location of the 
borderline. But the rest of p ( A )  is rather insensitive to it. 

The curve exhibit a peak around A w Tb. Among the important composed sequences 
ZlO'~210'~ and 2oi12106 (with j ,  # 0) all cycles have T < Tc, and indeed their periods are 
distributed around the peak of p ( A ) .  

When Tc < A < Td, p ( A )  is decreasing exponentially to a high degree of accuracy. In 
the region of exponential decay there seems to be a gap, with no pronounced timescales (as 
defined by means of finite sequences). 

When A > T d ,  the curve slowly begins to deviate from the exponential. Relevant 
sequences for this tail are e.g. 20j12G-the sequence 2020' terminates at j !x 990, T w 
116. 
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Figure 11. p ( A )  in the hyperbola billiard obtained by numerical simulation. 

It would be highly desirable to know the asymptotic form of p(A) ;  if possible we 
could be able to estimate the branch cut contribution V ~ , ( t ) .  However, the crossover 
from exponential decay to something else (power law?) warns us that p ( A )  is not easily 
extrapolated. There may be hiding more surprises higher up. Estimating the tail behaviour 
by analytical means would require a detailed understanding of how the almost integrable 
arms are coupled through the chaotic central region. The problem lies in the very long 
laminar phases (large A) which have segments of the trajectory coming from one ann and 
injected directly into the opposite without bouncing in the chaotic part (in the simulation 
we require at least one central bounce to consider the laminar phase as terminated). From 
a cycling point of view the classes Cid, C~ * Ci.p etc am central for the description of 
these trajectories. Excluding Ci.f as a first step in the regularization, as we did, seems quite 
reasonable. However, to proceed the regularization scheme further will require entirely new 
ideas. Such a procedure would probably reveal more singularities. 

In the calculation of the spectra above we concluded that the time scale Tc is in some 
sense dominant. An explanation of this is offered by the shape  of^ p(A) .  T, is the last 
timescale (breakpoint) before the exponential part of p(A) .  We concluded in section 3 that 
such a behaviour of p ( A )  would lead to a mean spacing corresponding to T,, at least in the 
lower part of the spectrum. 

We have been content with showing that the different timescales may be found in p ( A )  
and have not been tempted to utilize the histogram of p ( A )  to calculate a spectrum. This 
is not feasible &om such a coarse histogram. Moreover, the fine structure is blurred by the 
ambiguity of the borderline between the chaotic and the laminar regions. 

Although this section has ended in some frustration we summarize our main findings: 
We have computed several isolated zeros of the zeta function for the hyperbola billiard. We 
have also presented evidence for a branch cut in the zeta function implying slower-than- 
exponential decay 'of the trace. The evidence is threefold. First, the presence of the branch 
cut in the function Z, defined in equation (44). Secondly, the slower-than-exponential 
decay of the function p(A)  in figure 11. Thirdly, the discrepancy between the ckves in 
figure 10 obtained from exact summation of the trace and as a sum over discrete zeros. 
Finally we have identified a dominant time scale which is much longer than the shortest 
periodic orbit of the system. Time scales are introduced into the system by the termination 
of finite sequences of periodic orbits. 
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5. Semiclassical implications 

A very interesting application of the trace concems correlations in quantum spectra. The 
reason for this coupling is the close resemblance between the classical zeta function (4) and 
the semiclassical one [21] 

The pp's are the Maslov indices and S, are the action integrals which for homogeneous 
potentials, such as billiards, are proportional to the periods T, times some power of the 
energy E. The zeros of this object are (in the semiclassical limit) the quantum eigenvalues. 
D e  spectral density, as given by the logarithmic derivative of Z,,, yields the Gutzwiller 
trace formula [221. 

One such interesting correlation measure is the spectral rigidity A3(L). It is defined 
as follows. Given the quantum spectra [Ei] ,  consider the spectral staircase function 
N ( E )  = xi@(E - Ei). Now, make the best fit, by means of the least square method, 
by a linear function over L mean level spacings. Calculate the square deviation between 
N ( E )  and this linear function, average this quantity over an energy interval AE which 
contains many levels but is semiclassically small (AE is smaller than the energy scale 
given by the shortest periodic orbit in the system), and you end up with the function A3(L). 
Under the assumption that the trace, tr 13" is exactly one when t > Tdo Berry [23] showed 
that A&) is consistent with GOE for a range 0 < L < L,, where L,, corresponds to 
Tdn, if the system is chaotic and time reversible. But for bound chaotic systems we have 
realized that the trace may be significantly different from one up to a time scale much 
bigger than T ~ ,  This means that there is a region in L -= La where A3(L) cannot 
exhibit universal behaviour and where we can perform semiclassical calculations. This is 
really what quantum ch~ology is about, to relate the quantum behaviour to the classjcal 
by semiclassical methods. Indeed, such departure from universality for L c L,, has 
been observed in a number of numerical calculations [24-261. Moreover, if there is a 
contribution from a branch cut of the zeta function we expect the mce  trL' not to approach 
unity exponentially but rather as a power law. This extends further the dynamical interesting 
region in L. Indeed one can show that if the trace goes asymptotically as trL' + 1 - c / t  
the universal (GOE) result can only be achieved in the deep asymptotic limit E + CO. 

Time scales in connection with the spectrai rigidity have been discussed in [U]. 
We have seen that the trace for the hyperbola billiard is closer to 0.5 than 1.0, for a 

considerable range in t. This means that the A3(L) should be closer to the GUE result than 
to the GOE (which would be appropnate since the system is time reversible): this is exactly 
what is observed in a quantum mechanical calculation [261. 

A lot of the recent work in the area of quantum chaology has been occupied with the 
problem of relating individual eigenstates to the periodic orbits. Due to the exponential 
proliferation of cycles this cannot be pursued very high up in the spectrum. This 
problem is in itself very interesting. But, if we want to use semiclassical methods to 
investigate the transition from classical to quantum mechanics, that is, if we are interested 
in (asymptotically) high states, then we are bound to understand the asymptotics of the se1 of 
periodic orbits and this is, as we have seen, related to the tail of the probability distribution 
p(A) .  The problem of exploring the asymptotics of the set of cycles by explicitly computing 
them is well exemplified in [27]. 
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6. Concluding remarks 

In this paper we have discussed relations between periodic orbits, the resonance spectrum 
and the dynamical behaviour of a system. We have suggested a close relationship between 
the classical zeta function Z(k)  and the corresponding function 2 ( k )  as obtained from 
the BER approximation. We have not pursued this relation very far for the hyperbola 
billiard. This system is peculiar having infinite phase-space volume so that the derivation 
in section 2.2 becomes dubious. To study these ideas in detail will require much more 
theoretical work as well as numerical studies of a range of systems. Ergodic billiards calling 
to be investigated in this respect are e.g. the Sinai billiard and the closed three disk billiard. 
For the Sinai billiard it is straightforward to show that the function p ( A )  should decay as 
l/A3 suggesting that the trace behaves asymptotically behaves as trP -+ 1 - const/t. 

For the case of the hyperbola billiard we observed that the relevant time scale was much 
larger than the period of the shortest cycle. The dominant time scale for the Sinai billiard 
should be the mean free path between the disks bounces which is also much longer than 
the shortest cycle, for small disk radii. 

There is of course a more straightforward method to determine correlation specfn. This 
is to numerically simulate the system, compute the correlation function for some physical 
observable(s), make a Fourier transform and then locate its poles. This is feasible for discrete 
time systems (maps) since power series are easily analytically continued by standard Pad& 
techniques. But continuous time system (flows), as we have considered in this paper, would 
make that method much more tedious. 

The BER approximation offers us, in principle, a way to deduce the spectnun from 
knowledge of p(A)  which is often easy to obtain, numerically or by other means. However, 
we have argued that it may be hard to determine the non-leading zeros from a numerically 
obtained histogram, and often periodic orbit theory seems to be superior. But an interesting 
question is whether cycle expansions can be improved by knowledge of the leading 
singularities, as obtained from the tail of p ( A ) .  The optimal way to attack the hard 
problem of bound chaotic systems may perhaps be found through crossfertilization of present 
techniques. 

’ 

It is our hope that this paper provides some ideas for work along these lines. 
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Appendix 

We now demonstrate how to obtain a recurrence relation for the coefficients of the expansion 
of 
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Consider first the simpler problem of, expanding the Euler product 

m fi (1 + s) = z u n ( A ) t n ! .  
k=O "=O 

We extract the first factor 

and obtain the recurrence formula 

which can be solved exactly 

*-"'"-I,/z 
a. = i7iC1 (1 - A-k) ' 

We now use the same technique for equation (47) 

m 

k=O k=O k l  

leading to the recurrence relation 

References 

111 Pollicou M 1986 Inv. Math. 85 147 
[2] Ruelle D 1986 3. Stat. Phys. 44 281 
[3] Rwlle D I986 J Difl Cw" 25 99. I17 
[41 Rugh H H 1992 Nonlinenrig 5 1237 
151 Ruelle D 1983 C. R Acad. Sci, Pariss ir .  1 296 191 
[6] PollicoR M 1984 Ergod. Th D y ~ m  Sys. 4 135 
171 Dahlqvist P and Russberg G 1990 Phys. Rev. Len. 65 2837 
[SI Baladi V, Eckmann J P and Ruelle D 1989 Noniinearify 2 119 
191 Hannay J H and Ozorio de Almeida A M 1984 3. P h p  A: Math. Gen 17 3429 

[lo] CvitanoviC P and Eckhardt B 1991 3. Phys. A: Math Gen. .?A L237 
[Ill Aauso R. A d  E and CvitanoviC P 1990 Nonlinearity 3 325,361 
[12] CvitanoviC P and Eckhardt B 1989 Pkys. Rev. Lett. 63 823 
[13] Eckhardt B and Russberg 0 1993 Phys. Rev. E 47 1578 



Determination of resonance spectra for bound chaotic systems 785 

[I41 Abramovie M and Stegun I A 1964 Hmrdbook of Mahematicof Fnnetiom (Washington: National Bureau 

[I51 Sieber M and Steiner F 1990 Physica D 44 248 
[I61 Dahlqvist P and Russberg G 1991 I Phys. A: Mak. Gen 24 4163 
119 CvitanoviC P and Eckhardt B 1993 NonlineariO 6 277 
[I81 Aurich R, Bolte J, Matthies C Sietex M and Steiner F 1993 Phy& D 63 71 
[I91 Hansen K 1991 Chaos 2 71 
[20] Dahlqvist P I992 1. Phys. A: Math Gen. 25 6265 
1211 Voms A 1988 J. Phys. A: Math. Gen. 21 685 
I221 Guizwiller M C 1990 Chnos in Clnrsical and Quantwn Mechrmics (New York Springer) 
{U]  Beny M V 1985 Pmc. R. Sac A 4W 229 
[24] Wmtgen D, Marxer H and Briggs J S 1988 Phys. Rev. Lett. 61 1803 
[E] Arve P 1991 Phys. Rev. A 44 6920 
1261 Sieber M 1991 The Hyperbola Billiard: A d e l  forSeRiclarsie1 Quantization of Chaotic System, Thesis. 

1271 Argaman N. Doron E, Keating 1, Kiiwv A. Sieber M and Stnilansky U 1992 Currelotions in the Actions of 

of Standards) 

Fachbereichs Physik der Universirit Hamburg 

Periodic orbits Derivedfmm Qsantum Chaos, Preprint WIS-9U73/Sept-PH (Israel: Rehovot) 


